Logo Search packages:      
Sourcecode: postgresql-8.4 version File versions

rijndael.c

/*    $OpenBSD: rijndael.c,v 1.6 2000/12/09 18:51:34 markus Exp $ */

/* $PostgreSQL: pgsql/contrib/pgcrypto/rijndael.c,v 1.13 2007/04/06 05:36:50 tgl Exp $ */

/* This is an independent implementation of the encryption algorithm:   */
/*                                                                                                          */
/*             RIJNDAEL by Joan Daemen and Vincent Rijmen                           */
/*                                                                                                          */
/* which is a candidate algorithm in the Advanced Encryption Standard   */
/* programme of the US National Institute of Standards and Technology.  */
/*                                                                                                          */
/* Copyright in this implementation is held by Dr B R Gladman but I           */
/* hereby give permission for its free direct or derivative use subject */
/* to acknowledgment of its origin and compliance with any conditions   */
/* that the originators of the algorithm place on its exploitation.           */
/*                                                                                                          */
/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999           */

/* Timing data for Rijndael (rijndael.c)

Algorithm: rijndael (rijndael.c)

128 bit key:
Key Setup:    305/1389 cycles (encrypt/decrypt)
Encrypt:       374 cycles =    68.4 mbits/sec
Decrypt:       352 cycles =    72.7 mbits/sec
Mean:          363 cycles =    70.5 mbits/sec

192 bit key:
Key Setup:    277/1595 cycles (encrypt/decrypt)
Encrypt:       439 cycles =    58.3 mbits/sec
Decrypt:       425 cycles =    60.2 mbits/sec
Mean:          432 cycles =    59.3 mbits/sec

256 bit key:
Key Setup:    374/1960 cycles (encrypt/decrypt)
Encrypt:       502 cycles =    51.0 mbits/sec
Decrypt:       498 cycles =    51.4 mbits/sec
Mean:          500 cycles =    51.2 mbits/sec

*/

#include "postgres.h"

#include <sys/param.h>

#include "px.h"
#include "rijndael.h"

#define PRE_CALC_TABLES
#define LARGE_TABLES

static void gen_tabs(void);

/* 3. Basic macros for speeding up generic operations                   */

/* Circular rotate of 32 bit values                                                 */

#define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
#define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))

/* Invert byte order in a 32 bit variable                                     */

#define bswap(x)  ((rotl((x), 8) & 0x00ff00ff) | (rotr((x), 8) & 0xff00ff00))

/* Extract byte from a 32 bit quantity (little endian notation)         */

#define byte(x,n) ((u1byte)((x) >> (8 * (n))))

#ifdef WORDS_BIGENDIAN
#define io_swap(x)      bswap(x)
#else
#define io_swap(x)      (x)
#endif

#ifdef PRINT_TABS
#undef PRE_CALC_TABLES
#endif

#ifdef PRE_CALC_TABLES

#include "rijndael.tbl"
#define tab_gen         1
#else                                     /* !PRE_CALC_TABLES */

static u1byte pow_tab[256];
static u1byte log_tab[256];
static u1byte sbx_tab[256];
static u1byte isb_tab[256];
static u4byte rco_tab[10];
static u4byte ft_tab[4][256];
static u4byte it_tab[4][256];

#ifdef      LARGE_TABLES
static u4byte fl_tab[4][256];
static u4byte il_tab[4][256];
#endif

static u4byte tab_gen = 0;
#endif   /* !PRE_CALC_TABLES */

#define ff_mult(a,b)    ((a) && (b) ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)

#define f_rn(bo, bi, n, k)                                              \
      (bo)[n] =  ft_tab[0][byte((bi)[n],0)] ^                     \
                   ft_tab[1][byte((bi)[((n) + 1) & 3],1)] ^ \
                   ft_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
                   ft_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))

#define i_rn(bo, bi, n, k)                                        \
      (bo)[n] =  it_tab[0][byte((bi)[n],0)] ^                     \
                   it_tab[1][byte((bi)[((n) + 3) & 3],1)] ^ \
                   it_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
                   it_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))

#ifdef LARGE_TABLES

#define ls_box(x)                    \
      ( fl_tab[0][byte(x, 0)] ^      \
        fl_tab[1][byte(x, 1)] ^      \
        fl_tab[2][byte(x, 2)] ^      \
        fl_tab[3][byte(x, 3)] )

#define f_rl(bo, bi, n, k)                                              \
      (bo)[n] =  fl_tab[0][byte((bi)[n],0)] ^                     \
                   fl_tab[1][byte((bi)[((n) + 1) & 3],1)] ^ \
                   fl_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
                   fl_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))

#define i_rl(bo, bi, n, k)                                              \
      (bo)[n] =  il_tab[0][byte((bi)[n],0)] ^                     \
                   il_tab[1][byte((bi)[((n) + 3) & 3],1)] ^ \
                   il_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
                   il_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
#else

#define ls_box(x)                                      \
      ((u4byte)sbx_tab[byte(x, 0)] <<  0) ^      \
      ((u4byte)sbx_tab[byte(x, 1)] <<  8) ^      \
      ((u4byte)sbx_tab[byte(x, 2)] << 16) ^      \
      ((u4byte)sbx_tab[byte(x, 3)] << 24)

#define f_rl(bo, bi, n, k)                                                                \
      (bo)[n] = (u4byte)sbx_tab[byte((bi)[n],0)] ^                            \
            rotl(((u4byte)sbx_tab[byte((bi)[((n) + 1) & 3],1)]),  8) ^  \
            rotl(((u4byte)sbx_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^  \
            rotl(((u4byte)sbx_tab[byte((bi)[((n) + 3) & 3],3)]), 24) ^ *((k) + (n))

#define i_rl(bo, bi, n, k)                                                                \
      (bo)[n] = (u4byte)isb_tab[byte((bi)[n],0)] ^                            \
            rotl(((u4byte)isb_tab[byte((bi)[((n) + 3) & 3],1)]),  8) ^  \
            rotl(((u4byte)isb_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^  \
            rotl(((u4byte)isb_tab[byte((bi)[((n) + 1) & 3],3)]), 24) ^ *((k) + (n))
#endif

static void
gen_tabs(void)
{
#ifndef PRE_CALC_TABLES
      u4byte            i,
                        t;
      u1byte            p,
                        q;

      /* log and power tables for GF(2**8) finite field with      */
      /* 0x11b as modular polynomial - the simplest prmitive      */
      /* root is 0x11, used here to generate the tables           */

      for (i = 0, p = 1; i < 256; ++i)
      {
            pow_tab[i] = (u1byte) p;
            log_tab[p] = (u1byte) i;

            p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
      }

      log_tab[1] = 0;
      p = 1;

      for (i = 0; i < 10; ++i)
      {
            rco_tab[i] = p;

            p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
      }

      /* note that the affine byte transformation matrix in */
      /* rijndael specification is in big endian format with      */
      /* bit 0 as the most significant bit. In the remainder      */
      /* of the specification the bits are numbered from the      */
      /* least significant end of a byte.                               */

      for (i = 0; i < 256; ++i)
      {
            p = (i ? pow_tab[255 - log_tab[i]] : 0);
            q = p;
            q = (q >> 7) | (q << 1);
            p ^= q;
            q = (q >> 7) | (q << 1);
            p ^= q;
            q = (q >> 7) | (q << 1);
            p ^= q;
            q = (q >> 7) | (q << 1);
            p ^= q ^ 0x63;
            sbx_tab[i] = (u1byte) p;
            isb_tab[p] = (u1byte) i;
      }

      for (i = 0; i < 256; ++i)
      {
            p = sbx_tab[i];

#ifdef      LARGE_TABLES

            t = p;
            fl_tab[0][i] = t;
            fl_tab[1][i] = rotl(t, 8);
            fl_tab[2][i] = rotl(t, 16);
            fl_tab[3][i] = rotl(t, 24);
#endif
            t = ((u4byte) ff_mult(2, p)) |
                  ((u4byte) p << 8) |
                  ((u4byte) p << 16) |
                  ((u4byte) ff_mult(3, p) << 24);

            ft_tab[0][i] = t;
            ft_tab[1][i] = rotl(t, 8);
            ft_tab[2][i] = rotl(t, 16);
            ft_tab[3][i] = rotl(t, 24);

            p = isb_tab[i];

#ifdef      LARGE_TABLES

            t = p;
            il_tab[0][i] = t;
            il_tab[1][i] = rotl(t, 8);
            il_tab[2][i] = rotl(t, 16);
            il_tab[3][i] = rotl(t, 24);
#endif
            t = ((u4byte) ff_mult(14, p)) |
                  ((u4byte) ff_mult(9, p) << 8) |
                  ((u4byte) ff_mult(13, p) << 16) |
                  ((u4byte) ff_mult(11, p) << 24);

            it_tab[0][i] = t;
            it_tab[1][i] = rotl(t, 8);
            it_tab[2][i] = rotl(t, 16);
            it_tab[3][i] = rotl(t, 24);
      }

      tab_gen = 1;
#endif   /* !PRE_CALC_TABLES */
}


#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)

#define imix_col(y,x)         \
do { \
      u     = star_x(x);            \
      v     = star_x(u);            \
      w     = star_x(v);            \
      t     = w ^ (x);              \
   (y)      = u ^ v ^ w;            \
   (y) ^= rotr(u ^ t,  8) ^ \
              rotr(v ^ t, 16) ^ \
              rotr(t,24);           \
} while (0)

/* initialise the key schedule from the user supplied key   */

#define loop4(i)                                                  \
do {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];             \
      t ^= e_key[4 * i];         e_key[4 * i + 4] = t;      \
      t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t;    \
      t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t;    \
      t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t;    \
} while (0)

#define loop6(i)                                                  \
do {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];             \
      t ^= e_key[6 * (i)];       e_key[6 * (i) + 6] = t;    \
      t ^= e_key[6 * (i) + 1]; e_key[6 * (i) + 7] = t;      \
      t ^= e_key[6 * (i) + 2]; e_key[6 * (i) + 8] = t;      \
      t ^= e_key[6 * (i) + 3]; e_key[6 * (i) + 9] = t;      \
      t ^= e_key[6 * (i) + 4]; e_key[6 * (i) + 10] = t;     \
      t ^= e_key[6 * (i) + 5]; e_key[6 * (i) + 11] = t;     \
} while (0)

#define loop8(i)                                                  \
do {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];             \
      t ^= e_key[8 * (i)];     e_key[8 * (i) + 8] = t;      \
      t ^= e_key[8 * (i) + 1]; e_key[8 * (i) + 9] = t;      \
      t ^= e_key[8 * (i) + 2]; e_key[8 * (i) + 10] = t;     \
      t ^= e_key[8 * (i) + 3]; e_key[8 * (i) + 11] = t;     \
      t  = e_key[8 * (i) + 4] ^ ls_box(t);                        \
      e_key[8 * (i) + 12] = t;                                          \
      t ^= e_key[8 * (i) + 5]; e_key[8 * (i) + 13] = t;     \
      t ^= e_key[8 * (i) + 6]; e_key[8 * (i) + 14] = t;     \
      t ^= e_key[8 * (i) + 7]; e_key[8 * (i) + 15] = t;     \
} while (0)

rijndael_ctx *
rijndael_set_key(rijndael_ctx * ctx, const u4byte * in_key, const u4byte key_len,
                         int encrypt)
{
      u4byte            i,
                        t,
                        u,
                        v,
                        w;
      u4byte         *e_key = ctx->e_key;
      u4byte         *d_key = ctx->d_key;

      ctx->decrypt = !encrypt;

      if (!tab_gen)
            gen_tabs();

      ctx->k_len = (key_len + 31) / 32;

      e_key[0] = io_swap(in_key[0]);
      e_key[1] = io_swap(in_key[1]);
      e_key[2] = io_swap(in_key[2]);
      e_key[3] = io_swap(in_key[3]);

      switch (ctx->k_len)
      {
            case 4:
                  t = e_key[3];
                  for (i = 0; i < 10; ++i)
                        loop4(i);
                  break;

            case 6:
                  e_key[4] = io_swap(in_key[4]);
                  t = e_key[5] = io_swap(in_key[5]);
                  for (i = 0; i < 8; ++i)
                        loop6(i);
                  break;

            case 8:
                  e_key[4] = io_swap(in_key[4]);
                  e_key[5] = io_swap(in_key[5]);
                  e_key[6] = io_swap(in_key[6]);
                  t = e_key[7] = io_swap(in_key[7]);
                  for (i = 0; i < 7; ++i)
                        loop8(i);
                  break;
      }

      if (!encrypt)
      {
            d_key[0] = e_key[0];
            d_key[1] = e_key[1];
            d_key[2] = e_key[2];
            d_key[3] = e_key[3];

            for (i = 4; i < 4 * ctx->k_len + 24; ++i)
                  imix_col(d_key[i], e_key[i]);
      }

      return ctx;
}

/* encrypt a block of text    */

#define f_nround(bo, bi, k) \
do { \
      f_rn(bo, bi, 0, k);           \
      f_rn(bo, bi, 1, k);           \
      f_rn(bo, bi, 2, k);           \
      f_rn(bo, bi, 3, k);           \
      k += 4;                             \
} while (0)

#define f_lround(bo, bi, k) \
do { \
      f_rl(bo, bi, 0, k);           \
      f_rl(bo, bi, 1, k);           \
      f_rl(bo, bi, 2, k);           \
      f_rl(bo, bi, 3, k);           \
} while (0)

void
rijndael_encrypt(rijndael_ctx * ctx, const u4byte * in_blk, u4byte * out_blk)
{
      u4byte            k_len = ctx->k_len;
      u4byte         *e_key = ctx->e_key;
      u4byte            b0[4],
                        b1[4],
                     *kp;

      b0[0] = io_swap(in_blk[0]) ^ e_key[0];
      b0[1] = io_swap(in_blk[1]) ^ e_key[1];
      b0[2] = io_swap(in_blk[2]) ^ e_key[2];
      b0[3] = io_swap(in_blk[3]) ^ e_key[3];

      kp = e_key + 4;

      if (k_len > 6)
      {
            f_nround(b1, b0, kp);
            f_nround(b0, b1, kp);
      }

      if (k_len > 4)
      {
            f_nround(b1, b0, kp);
            f_nround(b0, b1, kp);
      }

      f_nround(b1, b0, kp);
      f_nround(b0, b1, kp);
      f_nround(b1, b0, kp);
      f_nround(b0, b1, kp);
      f_nround(b1, b0, kp);
      f_nround(b0, b1, kp);
      f_nround(b1, b0, kp);
      f_nround(b0, b1, kp);
      f_nround(b1, b0, kp);
      f_lround(b0, b1, kp);

      out_blk[0] = io_swap(b0[0]);
      out_blk[1] = io_swap(b0[1]);
      out_blk[2] = io_swap(b0[2]);
      out_blk[3] = io_swap(b0[3]);
}

/* decrypt a block of text    */

#define i_nround(bo, bi, k) \
do { \
      i_rn(bo, bi, 0, k);           \
      i_rn(bo, bi, 1, k);           \
      i_rn(bo, bi, 2, k);           \
      i_rn(bo, bi, 3, k);           \
      k -= 4;                             \
} while (0)

#define i_lround(bo, bi, k) \
do { \
      i_rl(bo, bi, 0, k);           \
      i_rl(bo, bi, 1, k);           \
      i_rl(bo, bi, 2, k);           \
      i_rl(bo, bi, 3, k);           \
} while (0)

void
rijndael_decrypt(rijndael_ctx * ctx, const u4byte * in_blk, u4byte * out_blk)
{
      u4byte            b0[4],
                        b1[4],
                     *kp;
      u4byte            k_len = ctx->k_len;
      u4byte         *e_key = ctx->e_key;
      u4byte         *d_key = ctx->d_key;

      b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
      b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
      b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
      b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];

      kp = d_key + 4 * (k_len + 5);

      if (k_len > 6)
      {
            i_nround(b1, b0, kp);
            i_nround(b0, b1, kp);
      }

      if (k_len > 4)
      {
            i_nround(b1, b0, kp);
            i_nround(b0, b1, kp);
      }

      i_nround(b1, b0, kp);
      i_nround(b0, b1, kp);
      i_nround(b1, b0, kp);
      i_nround(b0, b1, kp);
      i_nround(b1, b0, kp);
      i_nround(b0, b1, kp);
      i_nround(b1, b0, kp);
      i_nround(b0, b1, kp);
      i_nround(b1, b0, kp);
      i_lround(b0, b1, kp);

      out_blk[0] = io_swap(b0[0]);
      out_blk[1] = io_swap(b0[1]);
      out_blk[2] = io_swap(b0[2]);
      out_blk[3] = io_swap(b0[3]);
}

/*
 * conventional interface
 *
 * ATM it hopes all data is 4-byte aligned - which
 * should be true for PX.  -marko
 */

void
aes_set_key(rijndael_ctx * ctx, const uint8 *key, unsigned keybits, int enc)
{
      uint32         *k;

      k = (uint32 *) key;
      rijndael_set_key(ctx, k, keybits, enc);
}

void
aes_ecb_encrypt(rijndael_ctx * ctx, uint8 *data, unsigned len)
{
      unsigned    bs = 16;
      uint32         *d;

      while (len >= bs)
      {
            d = (uint32 *) data;
            rijndael_encrypt(ctx, d, d);

            len -= bs;
            data += bs;
      }
}

void
aes_ecb_decrypt(rijndael_ctx * ctx, uint8 *data, unsigned len)
{
      unsigned    bs = 16;
      uint32         *d;

      while (len >= bs)
      {
            d = (uint32 *) data;
            rijndael_decrypt(ctx, d, d);

            len -= bs;
            data += bs;
      }
}

void
aes_cbc_encrypt(rijndael_ctx * ctx, uint8 *iva, uint8 *data, unsigned len)
{
      uint32         *iv = (uint32 *) iva;
      uint32         *d = (uint32 *) data;
      unsigned    bs = 16;

      while (len >= bs)
      {
            d[0] ^= iv[0];
            d[1] ^= iv[1];
            d[2] ^= iv[2];
            d[3] ^= iv[3];

            rijndael_encrypt(ctx, d, d);

            iv = d;
            d += bs / 4;
            len -= bs;
      }
}

void
aes_cbc_decrypt(rijndael_ctx * ctx, uint8 *iva, uint8 *data, unsigned len)
{
      uint32         *d = (uint32 *) data;
      unsigned    bs = 16;
      uint32            buf[4],
                        iv[4];

      memcpy(iv, iva, bs);
      while (len >= bs)
      {
            buf[0] = d[0];
            buf[1] = d[1];
            buf[2] = d[2];
            buf[3] = d[3];

            rijndael_decrypt(ctx, buf, d);

            d[0] ^= iv[0];
            d[1] ^= iv[1];
            d[2] ^= iv[2];
            d[3] ^= iv[3];

            iv[0] = buf[0];
            iv[1] = buf[1];
            iv[2] = buf[2];
            iv[3] = buf[3];
            d += 4;
            len -= bs;
      }
}

/*
 * pre-calculate tables.
 *
 * On i386 lifts 17k from .bss to .rodata
 * and avoids 1k code and setup time.
 *      -marko
 */
#ifdef PRINT_TABS

static void
show256u8(char *name, uint8 *data)
{
      int               i;

      printf("static const u1byte  %s[256] = {\n  ", name);
      for (i = 0; i < 256;)
      {
            printf("%u", pow_tab[i++]);
            if (i < 256)
                  printf(i % 16 ? ", " : ",\n  ");
      }
      printf("\n};\n\n");
}


static void
show4x256u32(char *name, uint32 data[4][256])
{
      int               i,
                        j;

      printf("static const u4byte  %s[4][256] = {\n{\n  ", name);
      for (i = 0; i < 4; i++)
      {
            for (j = 0; j < 256;)
            {
                  printf("0x%08x", data[i][j]);
                  j++;
                  if (j < 256)
                        printf(j % 4 ? ", " : ",\n  ");
            }
            printf(i < 3 ? "\n}, {\n  " : "\n}\n");
      }
      printf("};\n\n");
}

int
main()
{
      int               i;
      char     *hdr = "/* Generated by rijndael.c */\n\n";

      gen_tabs();

      printf(hdr);
      show256u8("pow_tab", pow_tab);
      show256u8("log_tab", log_tab);
      show256u8("sbx_tab", sbx_tab);
      show256u8("isb_tab", isb_tab);

      show4x256u32("ft_tab", ft_tab);
      show4x256u32("it_tab", it_tab);
#ifdef LARGE_TABLES
      show4x256u32("fl_tab", fl_tab);
      show4x256u32("il_tab", il_tab);
#endif
      printf("static const u4byte rco_tab[10] = {\n  ");
      for (i = 0; i < 10; i++)
      {
            printf("0x%08x", rco_tab[i]);
            if (i < 9)
                  printf(", ");
            if (i == 4)
                  printf("\n  ");
      }
      printf("\n};\n\n");
      return 0;
}

#endif

Generated by  Doxygen 1.6.0   Back to index