Logo Search packages:      
Sourcecode: postgresql-8.4 version File versions

postgres.h

/*-------------------------------------------------------------------------
 *
 * postgres.h
 *      Primary include file for PostgreSQL server .c files
 *
 * This should be the first file included by PostgreSQL backend modules.
 * Client-side code should include postgres_fe.h instead.
 *
 *
 * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
 * Portions Copyright (c) 1995, Regents of the University of California
 *
 * $PostgreSQL$
 *
 *-------------------------------------------------------------------------
 */
/*
 *----------------------------------------------------------------
 *     TABLE OF CONTENTS
 *
 *          When adding stuff to this file, please try to put stuff
 *          into the relevant section, or add new sections as appropriate.
 *
 *      section   description
 *      -------   ------------------------------------------------
 *          1)          variable-length datatypes (TOAST support)
 *          2)          datum type + support macros
 *          3)          exception handling definitions
 *
 *     NOTES
 *
 *    In general, this file should contain declarations that are widely needed
 *    in the backend environment, but are of no interest outside the backend.
 *
 *    Simple type definitions live in c.h, where they are shared with
 *    postgres_fe.h.    We do that since those type definitions are needed by
 *    frontend modules that want to deal with binary data transmission to or
 *    from the backend.  Type definitions in this file should be for
 *    representations that never escape the backend, such as Datum or
 *    TOASTed varlena objects.
 *
 *----------------------------------------------------------------
 */
#ifndef POSTGRES_H
#define POSTGRES_H

#include "c.h"
#include "utils/elog.h"
#include "utils/palloc.h"

/* ----------------------------------------------------------------
 *                      Section 1:  variable-length datatypes (TOAST support)
 * ----------------------------------------------------------------
 */

/*
 * struct varatt_external is a "TOAST pointer", that is, the information
 * needed to fetch a stored-out-of-line Datum.  The data is compressed
 * if and only if va_extsize < va_rawsize - VARHDRSZ.  This struct must not
 * contain any padding, because we sometimes compare pointers using memcmp.
 *
 * Note that this information is stored unaligned within actual tuples, so
 * you need to memcpy from the tuple into a local struct variable before
 * you can look at these fields!  (The reason we use memcmp is to avoid
 * having to do that just to detect equality of two TOAST pointers...)
 */
struct varatt_external
{
      int32       va_rawsize;       /* Original data size (includes header) */
      int32       va_extsize;       /* External saved size (doesn't) */
      Oid               va_valueid;       /* Unique ID of value within TOAST table */
      Oid               va_toastrelid;    /* RelID of TOAST table containing it */
};

/*
 * These structs describe the header of a varlena object that may have been
 * TOASTed.  Generally, don't reference these structs directly, but use the
 * macros below.
 *
 * We use separate structs for the aligned and unaligned cases because the
 * compiler might otherwise think it could generate code that assumes
 * alignment while touching fields of a 1-byte-header varlena.
 */
typedef union
{
      struct                                    /* Normal varlena (4-byte length) */
      {
            uint32            va_header;
            char        va_data[1];
      }                 va_4byte;
      struct                                    /* Compressed-in-line format */
      {
            uint32            va_header;
            uint32            va_rawsize; /* Original data size (excludes header) */
            char        va_data[1]; /* Compressed data */
      }                 va_compressed;
} varattrib_4b;

typedef struct
{
      uint8       va_header;
      char        va_data[1];       /* Data begins here */
} varattrib_1b;

typedef struct
{
      uint8       va_header;        /* Always 0x80 or 0x01 */
      uint8       va_len_1be;       /* Physical length of datum */
      char        va_data[1];       /* Data (for now always a TOAST pointer) */
} varattrib_1b_e;

/*
 * Bit layouts for varlena headers on big-endian machines:
 *
 * 00xxxxxx 4-byte length word, aligned, uncompressed data (up to 1G)
 * 01xxxxxx 4-byte length word, aligned, *compressed* data (up to 1G)
 * 10000000 1-byte length word, unaligned, TOAST pointer
 * 1xxxxxxx 1-byte length word, unaligned, uncompressed data (up to 126b)
 *
 * Bit layouts for varlena headers on little-endian machines:
 *
 * xxxxxx00 4-byte length word, aligned, uncompressed data (up to 1G)
 * xxxxxx10 4-byte length word, aligned, *compressed* data (up to 1G)
 * 00000001 1-byte length word, unaligned, TOAST pointer
 * xxxxxxx1 1-byte length word, unaligned, uncompressed data (up to 126b)
 *
 * The "xxx" bits are the length field (which includes itself in all cases).
 * In the big-endian case we mask to extract the length, in the little-endian
 * case we shift.  Note that in both cases the flag bits are in the physically
 * first byte.    Also, it is not possible for a 1-byte length word to be zero;
 * this lets us disambiguate alignment padding bytes from the start of an
 * unaligned datum.  (We now *require* pad bytes to be filled with zero!)
 */

/*
 * Endian-dependent macros.  These are considered internal --- use the
 * external macros below instead of using these directly.
 *
 * Note: IS_1B is true for external toast records but VARSIZE_1B will return 0
 * for such records. Hence you should usually check for IS_EXTERNAL before
 * checking for IS_1B.
 */

#ifdef WORDS_BIGENDIAN

#define VARATT_IS_4B(PTR) \
      ((((varattrib_1b *) (PTR))->va_header & 0x80) == 0x00)
#define VARATT_IS_4B_U(PTR) \
      ((((varattrib_1b *) (PTR))->va_header & 0xC0) == 0x00)
#define VARATT_IS_4B_C(PTR) \
      ((((varattrib_1b *) (PTR))->va_header & 0xC0) == 0x40)
#define VARATT_IS_1B(PTR) \
      ((((varattrib_1b *) (PTR))->va_header & 0x80) == 0x80)
#define VARATT_IS_1B_E(PTR) \
      ((((varattrib_1b *) (PTR))->va_header) == 0x80)
#define VARATT_NOT_PAD_BYTE(PTR) \
      (*((uint8 *) (PTR)) != 0)

/* VARSIZE_4B() should only be used on known-aligned data */
#define VARSIZE_4B(PTR) \
      (((varattrib_4b *) (PTR))->va_4byte.va_header & 0x3FFFFFFF)
#define VARSIZE_1B(PTR) \
      (((varattrib_1b *) (PTR))->va_header & 0x7F)
#define VARSIZE_1B_E(PTR) \
      (((varattrib_1b_e *) (PTR))->va_len_1be)

#define SET_VARSIZE_4B(PTR,len) \
      (((varattrib_4b *) (PTR))->va_4byte.va_header = (len) & 0x3FFFFFFF)
#define SET_VARSIZE_4B_C(PTR,len) \
      (((varattrib_4b *) (PTR))->va_4byte.va_header = ((len) & 0x3FFFFFFF) | 0x40000000)
#define SET_VARSIZE_1B(PTR,len) \
      (((varattrib_1b *) (PTR))->va_header = (len) | 0x80)
#define SET_VARSIZE_1B_E(PTR,len) \
      (((varattrib_1b_e *) (PTR))->va_header = 0x80, \
       ((varattrib_1b_e *) (PTR))->va_len_1be = (len))
#else                                     /* !WORDS_BIGENDIAN */

#define VARATT_IS_4B(PTR) \
      ((((varattrib_1b *) (PTR))->va_header & 0x01) == 0x00)
#define VARATT_IS_4B_U(PTR) \
      ((((varattrib_1b *) (PTR))->va_header & 0x03) == 0x00)
#define VARATT_IS_4B_C(PTR) \
      ((((varattrib_1b *) (PTR))->va_header & 0x03) == 0x02)
#define VARATT_IS_1B(PTR) \
      ((((varattrib_1b *) (PTR))->va_header & 0x01) == 0x01)
#define VARATT_IS_1B_E(PTR) \
      ((((varattrib_1b *) (PTR))->va_header) == 0x01)
#define VARATT_NOT_PAD_BYTE(PTR) \
      (*((uint8 *) (PTR)) != 0)

/* VARSIZE_4B() should only be used on known-aligned data */
#define VARSIZE_4B(PTR) \
      ((((varattrib_4b *) (PTR))->va_4byte.va_header >> 2) & 0x3FFFFFFF)
#define VARSIZE_1B(PTR) \
      ((((varattrib_1b *) (PTR))->va_header >> 1) & 0x7F)
#define VARSIZE_1B_E(PTR) \
      (((varattrib_1b_e *) (PTR))->va_len_1be)

#define SET_VARSIZE_4B(PTR,len) \
      (((varattrib_4b *) (PTR))->va_4byte.va_header = (((uint32) (len)) << 2))
#define SET_VARSIZE_4B_C(PTR,len) \
      (((varattrib_4b *) (PTR))->va_4byte.va_header = (((uint32) (len)) << 2) | 0x02)
#define SET_VARSIZE_1B(PTR,len) \
      (((varattrib_1b *) (PTR))->va_header = (((uint8) (len)) << 1) | 0x01)
#define SET_VARSIZE_1B_E(PTR,len) \
      (((varattrib_1b_e *) (PTR))->va_header = 0x01, \
       ((varattrib_1b_e *) (PTR))->va_len_1be = (len))
#endif   /* WORDS_BIGENDIAN */

#define VARHDRSZ_SHORT              1
#define VARATT_SHORT_MAX            0x7F
#define VARATT_CAN_MAKE_SHORT(PTR) \
      (VARATT_IS_4B_U(PTR) && \
       (VARSIZE(PTR) - VARHDRSZ + VARHDRSZ_SHORT) <= VARATT_SHORT_MAX)
#define VARATT_CONVERTED_SHORT_SIZE(PTR) \
      (VARSIZE(PTR) - VARHDRSZ + VARHDRSZ_SHORT)

#define VARHDRSZ_EXTERNAL           2

#define VARDATA_4B(PTR)       (((varattrib_4b *) (PTR))->va_4byte.va_data)
#define VARDATA_4B_C(PTR)     (((varattrib_4b *) (PTR))->va_compressed.va_data)
#define VARDATA_1B(PTR)       (((varattrib_1b *) (PTR))->va_data)
#define VARDATA_1B_E(PTR)     (((varattrib_1b_e *) (PTR))->va_data)

#define VARRAWSIZE_4B_C(PTR) \
      (((varattrib_4b *) (PTR))->va_compressed.va_rawsize)

/* Externally visible macros */

/*
 * VARDATA, VARSIZE, and SET_VARSIZE are the recommended API for most code
 * for varlena datatypes.  Note that they only work on untoasted,
 * 4-byte-header Datums!
 *
 * Code that wants to use 1-byte-header values without detoasting should
 * use VARSIZE_ANY/VARSIZE_ANY_EXHDR/VARDATA_ANY.  The other macros here
 * should usually be used only by tuple assembly/disassembly code and
 * code that specifically wants to work with still-toasted Datums.
 *
 * WARNING: It is only safe to use VARDATA_ANY() -- typically with
 * PG_DETOAST_DATUM_PACKED() -- if you really don't care about the alignment.
 * Either because you're working with something like text where the alignment
 * doesn't matter or because you're not going to access its constituent parts
 * and just use things like memcpy on it anyways.
 */
#define VARDATA(PTR)                                  VARDATA_4B(PTR)
#define VARSIZE(PTR)                                  VARSIZE_4B(PTR)

#define VARSIZE_SHORT(PTR)                            VARSIZE_1B(PTR)
#define VARDATA_SHORT(PTR)                            VARDATA_1B(PTR)

#define VARSIZE_EXTERNAL(PTR)                   VARSIZE_1B_E(PTR)
#define VARDATA_EXTERNAL(PTR)                   VARDATA_1B_E(PTR)

#define VARATT_IS_COMPRESSED(PTR)               VARATT_IS_4B_C(PTR)
#define VARATT_IS_EXTERNAL(PTR)                       VARATT_IS_1B_E(PTR)
#define VARATT_IS_SHORT(PTR)                    VARATT_IS_1B(PTR)
#define VARATT_IS_EXTENDED(PTR)                       (!VARATT_IS_4B_U(PTR))

#define SET_VARSIZE(PTR, len)                   SET_VARSIZE_4B(PTR, len)
#define SET_VARSIZE_SHORT(PTR, len)             SET_VARSIZE_1B(PTR, len)
#define SET_VARSIZE_COMPRESSED(PTR, len)  SET_VARSIZE_4B_C(PTR, len)
#define SET_VARSIZE_EXTERNAL(PTR, len)          SET_VARSIZE_1B_E(PTR, len)

#define VARSIZE_ANY(PTR) \
      (VARATT_IS_1B_E(PTR) ? VARSIZE_1B_E(PTR) : \
       (VARATT_IS_1B(PTR) ? VARSIZE_1B(PTR) : \
        VARSIZE_4B(PTR)))

#define VARSIZE_ANY_EXHDR(PTR) \
      (VARATT_IS_1B_E(PTR) ? VARSIZE_1B_E(PTR)-VARHDRSZ_EXTERNAL : \
       (VARATT_IS_1B(PTR) ? VARSIZE_1B(PTR)-VARHDRSZ_SHORT : \
        VARSIZE_4B(PTR)-VARHDRSZ))

/* caution: this will not work on an external or compressed-in-line Datum */
/* caution: this will return a possibly unaligned pointer */
#define VARDATA_ANY(PTR) \
       (VARATT_IS_1B(PTR) ? VARDATA_1B(PTR) : VARDATA_4B(PTR))


/* ----------------------------------------------------------------
 *                      Section 2:  datum type + support macros
 * ----------------------------------------------------------------
 */

/*
 * Port Notes:
 *    Postgres makes the following assumption about machines:
 *
 *    sizeof(Datum) == sizeof(long) >= sizeof(void *) >= 4
 *
 *    Postgres also assumes that
 *
 *    sizeof(char) == 1
 *
 *    and that
 *
 *    sizeof(short) == 2
 *
 * When a type narrower than Datum is stored in a Datum, we place it in the
 * low-order bits and are careful that the DatumGetXXX macro for it discards
 * the unused high-order bits (as opposed to, say, assuming they are zero).
 * This is needed to support old-style user-defined functions, since depending
 * on architecture and compiler, the return value of a function returning char
 * or short may contain garbage when called as if it returned Datum.
 */

typedef unsigned long Datum;  /* XXX sizeof(long) >= sizeof(void *) */

#define SIZEOF_DATUM SIZEOF_UNSIGNED_LONG

typedef Datum *DatumPtr;

#define GET_1_BYTE(datum)     (((Datum) (datum)) & 0x000000ff)
#define GET_2_BYTES(datum)    (((Datum) (datum)) & 0x0000ffff)
#define GET_4_BYTES(datum)    (((Datum) (datum)) & 0xffffffff)
#if SIZEOF_DATUM == 8
#define GET_8_BYTES(datum)    ((Datum) (datum))
#endif
#define SET_1_BYTE(value)     (((Datum) (value)) & 0x000000ff)
#define SET_2_BYTES(value)    (((Datum) (value)) & 0x0000ffff)
#define SET_4_BYTES(value)    (((Datum) (value)) & 0xffffffff)
#if SIZEOF_DATUM == 8
#define SET_8_BYTES(value)    ((Datum) (value))
#endif

/*
 * DatumGetBool
 *          Returns boolean value of a datum.
 *
 * Note: any nonzero value will be considered TRUE, but we ignore bits to
 * the left of the width of bool, per comment above.
 */

#define DatumGetBool(X) ((bool) (((bool) (X)) != 0))

/*
 * BoolGetDatum
 *          Returns datum representation for a boolean.
 *
 * Note: any nonzero value will be considered TRUE.
 */

#define BoolGetDatum(X) ((Datum) ((X) ? 1 : 0))

/*
 * DatumGetChar
 *          Returns character value of a datum.
 */

#define DatumGetChar(X) ((char) GET_1_BYTE(X))

/*
 * CharGetDatum
 *          Returns datum representation for a character.
 */

#define CharGetDatum(X) ((Datum) SET_1_BYTE(X))

/*
 * Int8GetDatum
 *          Returns datum representation for an 8-bit integer.
 */

#define Int8GetDatum(X) ((Datum) SET_1_BYTE(X))

/*
 * DatumGetUInt8
 *          Returns 8-bit unsigned integer value of a datum.
 */

#define DatumGetUInt8(X) ((uint8) GET_1_BYTE(X))

/*
 * UInt8GetDatum
 *          Returns datum representation for an 8-bit unsigned integer.
 */

#define UInt8GetDatum(X) ((Datum) SET_1_BYTE(X))

/*
 * DatumGetInt16
 *          Returns 16-bit integer value of a datum.
 */

#define DatumGetInt16(X) ((int16) GET_2_BYTES(X))

/*
 * Int16GetDatum
 *          Returns datum representation for a 16-bit integer.
 */

#define Int16GetDatum(X) ((Datum) SET_2_BYTES(X))

/*
 * DatumGetUInt16
 *          Returns 16-bit unsigned integer value of a datum.
 */

#define DatumGetUInt16(X) ((uint16) GET_2_BYTES(X))

/*
 * UInt16GetDatum
 *          Returns datum representation for a 16-bit unsigned integer.
 */

#define UInt16GetDatum(X) ((Datum) SET_2_BYTES(X))

/*
 * DatumGetInt32
 *          Returns 32-bit integer value of a datum.
 */

#define DatumGetInt32(X) ((int32) GET_4_BYTES(X))

/*
 * Int32GetDatum
 *          Returns datum representation for a 32-bit integer.
 */

#define Int32GetDatum(X) ((Datum) SET_4_BYTES(X))

/*
 * DatumGetUInt32
 *          Returns 32-bit unsigned integer value of a datum.
 */

#define DatumGetUInt32(X) ((uint32) GET_4_BYTES(X))

/*
 * UInt32GetDatum
 *          Returns datum representation for a 32-bit unsigned integer.
 */

#define UInt32GetDatum(X) ((Datum) SET_4_BYTES(X))

/*
 * DatumGetObjectId
 *          Returns object identifier value of a datum.
 */

#define DatumGetObjectId(X) ((Oid) GET_4_BYTES(X))

/*
 * ObjectIdGetDatum
 *          Returns datum representation for an object identifier.
 */

#define ObjectIdGetDatum(X) ((Datum) SET_4_BYTES(X))

/*
 * DatumGetTransactionId
 *          Returns transaction identifier value of a datum.
 */

#define DatumGetTransactionId(X) ((TransactionId) GET_4_BYTES(X))

/*
 * TransactionIdGetDatum
 *          Returns datum representation for a transaction identifier.
 */

#define TransactionIdGetDatum(X) ((Datum) SET_4_BYTES((X)))

/*
 * DatumGetCommandId
 *          Returns command identifier value of a datum.
 */

#define DatumGetCommandId(X) ((CommandId) GET_4_BYTES(X))

/*
 * CommandIdGetDatum
 *          Returns datum representation for a command identifier.
 */

#define CommandIdGetDatum(X) ((Datum) SET_4_BYTES(X))

/*
 * DatumGetPointer
 *          Returns pointer value of a datum.
 */

#define DatumGetPointer(X) ((Pointer) (X))

/*
 * PointerGetDatum
 *          Returns datum representation for a pointer.
 */

#define PointerGetDatum(X) ((Datum) (X))

/*
 * DatumGetCString
 *          Returns C string (null-terminated string) value of a datum.
 *
 * Note: C string is not a full-fledged Postgres type at present,
 * but type input functions use this conversion for their inputs.
 */

#define DatumGetCString(X) ((char *) DatumGetPointer(X))

/*
 * CStringGetDatum
 *          Returns datum representation for a C string (null-terminated string).
 *
 * Note: C string is not a full-fledged Postgres type at present,
 * but type output functions use this conversion for their outputs.
 * Note: CString is pass-by-reference; caller must ensure the pointed-to
 * value has adequate lifetime.
 */

#define CStringGetDatum(X) PointerGetDatum(X)

/*
 * DatumGetName
 *          Returns name value of a datum.
 */

#define DatumGetName(X) ((Name) DatumGetPointer(X))

/*
 * NameGetDatum
 *          Returns datum representation for a name.
 *
 * Note: Name is pass-by-reference; caller must ensure the pointed-to
 * value has adequate lifetime.
 */

#define NameGetDatum(X) PointerGetDatum(X)

/*
 * DatumGetInt64
 *          Returns 64-bit integer value of a datum.
 *
 * Note: this macro hides whether int64 is pass by value or by reference.
 */

#ifdef USE_FLOAT8_BYVAL
#define DatumGetInt64(X) ((int64) GET_8_BYTES(X))
#else
#define DatumGetInt64(X) (* ((int64 *) DatumGetPointer(X)))
#endif

/*
 * Int64GetDatum
 *          Returns datum representation for a 64-bit integer.
 *
 * Note: if int64 is pass by reference, this function returns a reference
 * to palloc'd space.
 */

#ifdef USE_FLOAT8_BYVAL
#define Int64GetDatum(X) ((Datum) SET_8_BYTES(X))
#else
extern Datum Int64GetDatum(int64 X);
#endif

/*
 * DatumGetFloat4
 *          Returns 4-byte floating point value of a datum.
 *
 * Note: this macro hides whether float4 is pass by value or by reference.
 */

#ifdef USE_FLOAT4_BYVAL
extern float4 DatumGetFloat4(Datum X);
#else
#define DatumGetFloat4(X) (* ((float4 *) DatumGetPointer(X)))
#endif

/*
 * Float4GetDatum
 *          Returns datum representation for a 4-byte floating point number.
 *
 * Note: if float4 is pass by reference, this function returns a reference
 * to palloc'd space.
 */

extern Datum Float4GetDatum(float4 X);

/*
 * DatumGetFloat8
 *          Returns 8-byte floating point value of a datum.
 *
 * Note: this macro hides whether float8 is pass by value or by reference.
 */

#ifdef USE_FLOAT8_BYVAL
extern float8 DatumGetFloat8(Datum X);
#else
#define DatumGetFloat8(X) (* ((float8 *) DatumGetPointer(X)))
#endif

/*
 * Float8GetDatum
 *          Returns datum representation for an 8-byte floating point number.
 *
 * Note: if float8 is pass by reference, this function returns a reference
 * to palloc'd space.
 */

extern Datum Float8GetDatum(float8 X);


/*
 * Int64GetDatumFast
 * Float8GetDatumFast
 * Float4GetDatumFast
 *
 * These macros are intended to allow writing code that does not depend on
 * whether int64, float8, float4 are pass-by-reference types, while not
 * sacrificing performance when they are.  The argument must be a variable
 * that will exist and have the same value for as long as the Datum is needed.
 * In the pass-by-ref case, the address of the variable is taken to use as
 * the Datum.  In the pass-by-val case, these will be the same as the non-Fast
 * macros.
 */

#ifdef USE_FLOAT8_BYVAL
#define Int64GetDatumFast(X)  Int64GetDatum(X)
#define Float8GetDatumFast(X) Float8GetDatum(X)
#else
#define Int64GetDatumFast(X)  PointerGetDatum(&(X))
#define Float8GetDatumFast(X) PointerGetDatum(&(X))
#endif

#ifdef USE_FLOAT4_BYVAL
#define Float4GetDatumFast(X) Float4GetDatum(X)
#else
#define Float4GetDatumFast(X) PointerGetDatum(&(X))
#endif


/* ----------------------------------------------------------------
 *                      Section 3:  exception handling definitions
 *                                        Assert, Trap, etc macros
 * ----------------------------------------------------------------
 */

extern PGDLLIMPORT bool assert_enabled;

/*
 * USE_ASSERT_CHECKING, if defined, turns on all the assertions.
 * - plai  9/5/90
 *
 * It should _NOT_ be defined in releases or in benchmark copies
 */

/*
 * Trap
 *          Generates an exception if the given condition is true.
 */
#define Trap(condition, errorType) \
      do { \
            if ((assert_enabled) && (condition)) \
                  ExceptionalCondition(CppAsString(condition), (errorType), \
                                                 __FILE__, __LINE__); \
      } while (0)

/*
 *    TrapMacro is the same as Trap but it's intended for use in macros:
 *
 *          #define foo(x) (AssertMacro(x != 0) && bar(x))
 *
 *    Isn't CPP fun?
 */
#define TrapMacro(condition, errorType) \
      ((bool) ((! assert_enabled) || ! (condition) || \
                   (ExceptionalCondition(CppAsString(condition), (errorType), \
                                                   __FILE__, __LINE__))))

#ifndef USE_ASSERT_CHECKING
#define Assert(condition)
#define AssertMacro(condition)      ((void)true)
#define AssertArg(condition)
#define AssertState(condition)
#else
#define Assert(condition) \
            Trap(!(condition), "FailedAssertion")

#define AssertMacro(condition) \
            ((void) TrapMacro(!(condition), "FailedAssertion"))

#define AssertArg(condition) \
            Trap(!(condition), "BadArgument")

#define AssertState(condition) \
            Trap(!(condition), "BadState")
#endif   /* USE_ASSERT_CHECKING */

extern int ExceptionalCondition(const char *conditionName,
                               const char *errorType,
                               const char *fileName, int lineNumber);

#endif   /* POSTGRES_H */

Generated by  Doxygen 1.6.0   Back to index