Logo Search packages:      
Sourcecode: postgresql-8.4 version File versions  Download package

crypt-des.c

/*
 * FreeSec: libcrypt for NetBSD
 *
 * $PostgreSQL: pgsql/contrib/pgcrypto/crypt-des.c,v 1.15 2006/07/13 04:15:24 neilc Exp $
 *
 * Copyright (c) 1994 David Burren
 * All rights reserved.
 *
 * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
 *    this file should now *only* export crypt(), in order to make
 *    binaries of libcrypt exportable from the USA
 *
 * Adapted for FreeBSD-4.0 by Mark R V Murray
 *    this file should now *only* export crypt_des(), in order to make
 *    a module that can be optionally included in libcrypt.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions and the following disclaimer in the
 *      documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the author nor the names of other contributors
 *      may be used to endorse or promote products derived from this software
 *      without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.      IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD: src/secure/lib/libcrypt/crypt-des.c,v 1.12 1999/09/20 12:39:20 markm Exp $
 *
 * This is an original implementation of the DES and the crypt(3) interfaces
 * by David Burren <davidb@werj.com.au>.
 *
 * An excellent reference on the underlying algorithm (and related
 * algorithms) is:
 *
 *    B. Schneier, Applied Cryptography: protocols, algorithms,
 *    and source code in C, John Wiley & Sons, 1994.
 *
 * Note that in that book's description of DES the lookups for the initial,
 * pbox, and final permutations are inverted (this has been brought to the
 * attention of the author).  A list of errata for this book has been
 * posted to the sci.crypt newsgroup by the author and is available for FTP.
 *
 * ARCHITECTURE ASSUMPTIONS:
 *    It is assumed that the 8-byte arrays passed by reference can be
 *    addressed as arrays of uint32's (ie. the CPU is not picky about
 *    alignment).
 */

#include "postgres.h"

#include "px.h"
#include "px-crypt.h"

/* for ntohl/htonl */
#include <netinet/in.h>
#include <arpa/inet.h>

#define _PASSWORD_EFMT1 '_'

static const char _crypt_a64[] =
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";

static uint8 IP[64] = {
      58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
      62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
      57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
      61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
};

static uint8 inv_key_perm[64];
static uint8 u_key_perm[56];
static uint8 key_perm[56] = {
      57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
      10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
      63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
      14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
};

static uint8 key_shifts[16] = {
      1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};

static uint8 inv_comp_perm[56];
static uint8 comp_perm[48] = {
      14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
      23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
      41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
      44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
};

/*
 *    No E box is used, as it's replaced by some ANDs, shifts, and ORs.
 */

static uint8 u_sbox[8][64];
static uint8 sbox[8][64] = {
      {
            14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
            0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
            4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
            15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
      },
      {
            15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
            3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
            0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
            13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
      },
      {
            10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
            13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
            13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
            1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
      },
      {
            7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
            13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
            10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
            3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
      },
      {
            2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
            14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
            4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
            11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
      },
      {
            12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
            10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
            9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
            4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
      },
      {
            4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
            13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
            1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
            6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
      },
      {
            13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
            1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
            7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
            2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
      }
};

static uint8 un_pbox[32];
static uint8 pbox[32] = {
      16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
      2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
};

static uint32 _crypt_bits32[32] =
{
      0x80000000, 0x40000000, 0x20000000, 0x10000000,
      0x08000000, 0x04000000, 0x02000000, 0x01000000,
      0x00800000, 0x00400000, 0x00200000, 0x00100000,
      0x00080000, 0x00040000, 0x00020000, 0x00010000,
      0x00008000, 0x00004000, 0x00002000, 0x00001000,
      0x00000800, 0x00000400, 0x00000200, 0x00000100,
      0x00000080, 0x00000040, 0x00000020, 0x00000010,
      0x00000008, 0x00000004, 0x00000002, 0x00000001
};

static uint8 _crypt_bits8[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};

static uint32 saltbits;
static long old_salt;
static uint32 *bits28,
               *bits24;
static uint8 init_perm[64],
                  final_perm[64];
static uint32 en_keysl[16],
                  en_keysr[16];
static uint32 de_keysl[16],
                  de_keysr[16];
static int  des_initialised = 0;
static uint8 m_sbox[4][4096];
static uint32 psbox[4][256];
static uint32 ip_maskl[8][256],
                  ip_maskr[8][256];
static uint32 fp_maskl[8][256],
                  fp_maskr[8][256];
static uint32 key_perm_maskl[8][128],
                  key_perm_maskr[8][128];
static uint32 comp_maskl[8][128],
                  comp_maskr[8][128];
static uint32 old_rawkey0,
                  old_rawkey1;

static inline int
ascii_to_bin(char ch)
{
      if (ch > 'z')
            return (0);
      if (ch >= 'a')
            return (ch - 'a' + 38);
      if (ch > 'Z')
            return (0);
      if (ch >= 'A')
            return (ch - 'A' + 12);
      if (ch > '9')
            return (0);
      if (ch >= '.')
            return (ch - '.');
      return (0);
}

static void
des_init(void)
{
      int               i,
                        j,
                        b,
                        k,
                        inbit,
                        obit;
      uint32         *p,
                     *il,
                     *ir,
                     *fl,
                     *fr;

      old_rawkey0 = old_rawkey1 = 0L;
      saltbits = 0L;
      old_salt = 0L;
      bits24 = (bits28 = _crypt_bits32 + 4) + 4;

      /*
       * Invert the S-boxes, reordering the input bits.
       */
      for (i = 0; i < 8; i++)
            for (j = 0; j < 64; j++)
            {
                  b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
                  u_sbox[i][j] = sbox[i][b];
            }

      /*
       * Convert the inverted S-boxes into 4 arrays of 8 bits. Each will handle
       * 12 bits of the S-box input.
       */
      for (b = 0; b < 4; b++)
            for (i = 0; i < 64; i++)
                  for (j = 0; j < 64; j++)
                        m_sbox[b][(i << 6) | j] =
                              (u_sbox[(b << 1)][i] << 4) |
                              u_sbox[(b << 1) + 1][j];

      /*
       * Set up the initial & final permutations into a useful form, and
       * initialise the inverted key permutation.
       */
      for (i = 0; i < 64; i++)
      {
            init_perm[final_perm[i] = IP[i] - 1] = i;
            inv_key_perm[i] = 255;
      }

      /*
       * Invert the key permutation and initialise the inverted key compression
       * permutation.
       */
      for (i = 0; i < 56; i++)
      {
            u_key_perm[i] = key_perm[i] - 1;
            inv_key_perm[key_perm[i] - 1] = i;
            inv_comp_perm[i] = 255;
      }

      /*
       * Invert the key compression permutation.
       */
      for (i = 0; i < 48; i++)
            inv_comp_perm[comp_perm[i] - 1] = i;

      /*
       * Set up the OR-mask arrays for the initial and final permutations, and
       * for the key initial and compression permutations.
       */
      for (k = 0; k < 8; k++)
      {
            for (i = 0; i < 256; i++)
            {
                  *(il = &ip_maskl[k][i]) = 0L;
                  *(ir = &ip_maskr[k][i]) = 0L;
                  *(fl = &fp_maskl[k][i]) = 0L;
                  *(fr = &fp_maskr[k][i]) = 0L;
                  for (j = 0; j < 8; j++)
                  {
                        inbit = 8 * k + j;
                        if (i & _crypt_bits8[j])
                        {
                              if ((obit = init_perm[inbit]) < 32)
                                    *il |= _crypt_bits32[obit];
                              else
                                    *ir |= _crypt_bits32[obit - 32];
                              if ((obit = final_perm[inbit]) < 32)
                                    *fl |= _crypt_bits32[obit];
                              else
                                    *fr |= _crypt_bits32[obit - 32];
                        }
                  }
            }
            for (i = 0; i < 128; i++)
            {
                  *(il = &key_perm_maskl[k][i]) = 0L;
                  *(ir = &key_perm_maskr[k][i]) = 0L;
                  for (j = 0; j < 7; j++)
                  {
                        inbit = 8 * k + j;
                        if (i & _crypt_bits8[j + 1])
                        {
                              if ((obit = inv_key_perm[inbit]) == 255)
                                    continue;
                              if (obit < 28)
                                    *il |= bits28[obit];
                              else
                                    *ir |= bits28[obit - 28];
                        }
                  }
                  *(il = &comp_maskl[k][i]) = 0L;
                  *(ir = &comp_maskr[k][i]) = 0L;
                  for (j = 0; j < 7; j++)
                  {
                        inbit = 7 * k + j;
                        if (i & _crypt_bits8[j + 1])
                        {
                              if ((obit = inv_comp_perm[inbit]) == 255)
                                    continue;
                              if (obit < 24)
                                    *il |= bits24[obit];
                              else
                                    *ir |= bits24[obit - 24];
                        }
                  }
            }
      }

      /*
       * Invert the P-box permutation, and convert into OR-masks for handling
       * the output of the S-box arrays setup above.
       */
      for (i = 0; i < 32; i++)
            un_pbox[pbox[i] - 1] = i;

      for (b = 0; b < 4; b++)
            for (i = 0; i < 256; i++)
            {
                  *(p = &psbox[b][i]) = 0L;
                  for (j = 0; j < 8; j++)
                  {
                        if (i & _crypt_bits8[j])
                              *p |= _crypt_bits32[un_pbox[8 * b + j]];
                  }
            }

      des_initialised = 1;
}

static void
setup_salt(long salt)
{
      uint32            obit,
                        saltbit;
      int               i;

      if (salt == old_salt)
            return;
      old_salt = salt;

      saltbits = 0L;
      saltbit = 1;
      obit = 0x800000;
      for (i = 0; i < 24; i++)
      {
            if (salt & saltbit)
                  saltbits |= obit;
            saltbit <<= 1;
            obit >>= 1;
      }
}

static int
des_setkey(const char *key)
{
      uint32            k0,
                        k1,
                        rawkey0,
                        rawkey1;
      int               shifts,
                        round;

      if (!des_initialised)
            des_init();

      rawkey0 = ntohl(*(uint32 *) key);
      rawkey1 = ntohl(*(uint32 *) (key + 4));

      if ((rawkey0 | rawkey1)
            && rawkey0 == old_rawkey0
            && rawkey1 == old_rawkey1)
      {
            /*
             * Already setup for this key. This optimisation fails on a zero key
             * (which is weak and has bad parity anyway) in order to simplify the
             * starting conditions.
             */
            return (0);
      }
      old_rawkey0 = rawkey0;
      old_rawkey1 = rawkey1;

      /*
       * Do key permutation and split into two 28-bit subkeys.
       */
      k0 = key_perm_maskl[0][rawkey0 >> 25]
            | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
            | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
            | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
            | key_perm_maskl[4][rawkey1 >> 25]
            | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
            | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
            | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
      k1 = key_perm_maskr[0][rawkey0 >> 25]
            | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
            | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
            | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
            | key_perm_maskr[4][rawkey1 >> 25]
            | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
            | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
            | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];

      /*
       * Rotate subkeys and do compression permutation.
       */
      shifts = 0;
      for (round = 0; round < 16; round++)
      {
            uint32            t0,
                              t1;

            shifts += key_shifts[round];

            t0 = (k0 << shifts) | (k0 >> (28 - shifts));
            t1 = (k1 << shifts) | (k1 >> (28 - shifts));

            de_keysl[15 - round] =
                  en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
                  | comp_maskl[1][(t0 >> 14) & 0x7f]
                  | comp_maskl[2][(t0 >> 7) & 0x7f]
                  | comp_maskl[3][t0 & 0x7f]
                  | comp_maskl[4][(t1 >> 21) & 0x7f]
                  | comp_maskl[5][(t1 >> 14) & 0x7f]
                  | comp_maskl[6][(t1 >> 7) & 0x7f]
                  | comp_maskl[7][t1 & 0x7f];

            de_keysr[15 - round] =
                  en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
                  | comp_maskr[1][(t0 >> 14) & 0x7f]
                  | comp_maskr[2][(t0 >> 7) & 0x7f]
                  | comp_maskr[3][t0 & 0x7f]
                  | comp_maskr[4][(t1 >> 21) & 0x7f]
                  | comp_maskr[5][(t1 >> 14) & 0x7f]
                  | comp_maskr[6][(t1 >> 7) & 0x7f]
                  | comp_maskr[7][t1 & 0x7f];
      }
      return (0);
}

static int
do_des(uint32 l_in, uint32 r_in, uint32 *l_out, uint32 *r_out, int count)
{
      /*
       * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
       */
      uint32            l,
                        r,
                     *kl,
                     *kr,
                     *kl1,
                     *kr1;
      uint32            f,
                        r48l,
                        r48r;
      int               round;

      if (count == 0)
            return (1);
      else if (count > 0)
      {
            /*
             * Encrypting
             */
            kl1 = en_keysl;
            kr1 = en_keysr;
      }
      else
      {
            /*
             * Decrypting
             */
            count = -count;
            kl1 = de_keysl;
            kr1 = de_keysr;
      }

      /*
       * Do initial permutation (IP).
       */
      l = ip_maskl[0][l_in >> 24]
            | ip_maskl[1][(l_in >> 16) & 0xff]
            | ip_maskl[2][(l_in >> 8) & 0xff]
            | ip_maskl[3][l_in & 0xff]
            | ip_maskl[4][r_in >> 24]
            | ip_maskl[5][(r_in >> 16) & 0xff]
            | ip_maskl[6][(r_in >> 8) & 0xff]
            | ip_maskl[7][r_in & 0xff];
      r = ip_maskr[0][l_in >> 24]
            | ip_maskr[1][(l_in >> 16) & 0xff]
            | ip_maskr[2][(l_in >> 8) & 0xff]
            | ip_maskr[3][l_in & 0xff]
            | ip_maskr[4][r_in >> 24]
            | ip_maskr[5][(r_in >> 16) & 0xff]
            | ip_maskr[6][(r_in >> 8) & 0xff]
            | ip_maskr[7][r_in & 0xff];

      while (count--)
      {
            /*
             * Do each round.
             */
            kl = kl1;
            kr = kr1;
            round = 16;
            while (round--)
            {
                  /*
                   * Expand R to 48 bits (simulate the E-box).
                   */
                  r48l = ((r & 0x00000001) << 23)
                        | ((r & 0xf8000000) >> 9)
                        | ((r & 0x1f800000) >> 11)
                        | ((r & 0x01f80000) >> 13)
                        | ((r & 0x001f8000) >> 15);

                  r48r = ((r & 0x0001f800) << 7)
                        | ((r & 0x00001f80) << 5)
                        | ((r & 0x000001f8) << 3)
                        | ((r & 0x0000001f) << 1)
                        | ((r & 0x80000000) >> 31);

                  /*
                   * Do salting for crypt() and friends, and XOR with the permuted
                   * key.
                   */
                  f = (r48l ^ r48r) & saltbits;
                  r48l ^= f ^ *kl++;
                  r48r ^= f ^ *kr++;

                  /*
                   * Do sbox lookups (which shrink it back to 32 bits) and do the
                   * pbox permutation at the same time.
                   */
                  f = psbox[0][m_sbox[0][r48l >> 12]]
                        | psbox[1][m_sbox[1][r48l & 0xfff]]
                        | psbox[2][m_sbox[2][r48r >> 12]]
                        | psbox[3][m_sbox[3][r48r & 0xfff]];

                  /*
                   * Now that we've permuted things, complete f().
                   */
                  f ^= l;
                  l = r;
                  r = f;
            }
            r = l;
            l = f;
      }

      /*
       * Do final permutation (inverse of IP).
       */
      *l_out = fp_maskl[0][l >> 24]
            | fp_maskl[1][(l >> 16) & 0xff]
            | fp_maskl[2][(l >> 8) & 0xff]
            | fp_maskl[3][l & 0xff]
            | fp_maskl[4][r >> 24]
            | fp_maskl[5][(r >> 16) & 0xff]
            | fp_maskl[6][(r >> 8) & 0xff]
            | fp_maskl[7][r & 0xff];
      *r_out = fp_maskr[0][l >> 24]
            | fp_maskr[1][(l >> 16) & 0xff]
            | fp_maskr[2][(l >> 8) & 0xff]
            | fp_maskr[3][l & 0xff]
            | fp_maskr[4][r >> 24]
            | fp_maskr[5][(r >> 16) & 0xff]
            | fp_maskr[6][(r >> 8) & 0xff]
            | fp_maskr[7][r & 0xff];
      return (0);
}

static int
des_cipher(const char *in, char *out, long salt, int count)
{
      uint32            buffer[2];
      uint32            l_out,
                        r_out,
                        rawl,
                        rawr;
      int               retval;

      if (!des_initialised)
            des_init();

      setup_salt(salt);

      /* copy data to avoid assuming input is word-aligned */
      memcpy(buffer, in, sizeof(buffer));

      rawl = ntohl(buffer[0]);
      rawr = ntohl(buffer[1]);

      retval = do_des(rawl, rawr, &l_out, &r_out, count);

      buffer[0] = htonl(l_out);
      buffer[1] = htonl(r_out);

      /* copy data to avoid assuming output is word-aligned */
      memcpy(out, buffer, sizeof(buffer));

      return (retval);
}

char *
px_crypt_des(const char *key, const char *setting)
{
      int               i;
      uint32            count,
                        salt,
                        l,
                        r0,
                        r1,
                        keybuf[2];
      char     *p;
      uint8    *q;
      static char output[21];

      if (!des_initialised)
            des_init();


      /*
       * Copy the key, shifting each character up by one bit and padding with
       * zeros.
       */
      q = (uint8 *) keybuf;
      while (q - (uint8 *) keybuf - 8)
      {
            if ((*q++ = *key << 1))
                  key++;
      }
      if (des_setkey((char *) keybuf))
            return (NULL);

#ifndef DISABLE_XDES
      if (*setting == _PASSWORD_EFMT1)
      {
            /*
             * "new"-style: setting - underscore, 4 bytes of count, 4 bytes of
             * salt key - unlimited characters
             */
            for (i = 1, count = 0L; i < 5; i++)
                  count |= ascii_to_bin(setting[i]) << (i - 1) * 6;

            for (i = 5, salt = 0L; i < 9; i++)
                  salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;

            while (*key)
            {
                  /*
                   * Encrypt the key with itself.
                   */
                  if (des_cipher((char *) keybuf, (char *) keybuf, 0L, 1))
                        return (NULL);

                  /*
                   * And XOR with the next 8 characters of the key.
                   */
                  q = (uint8 *) keybuf;
                  while (q - (uint8 *) keybuf - 8 && *key)
                        *q++ ^= *key++ << 1;

                  if (des_setkey((char *) keybuf))
                        return (NULL);
            }
            strncpy(output, setting, 9);

            /*
             * Double check that we weren't given a short setting. If we were, the
             * above code will probably have created wierd values for count and
             * salt, but we don't really care. Just make sure the output string
             * doesn't have an extra NUL in it.
             */
            output[9] = '\0';
            p = output + strlen(output);
      }
      else
#endif   /* !DISABLE_XDES */
      {
            /*
             * "old"-style: setting - 2 bytes of salt key - up to 8 characters
             */
            count = 25;

            salt = (ascii_to_bin(setting[1]) << 6)
                  | ascii_to_bin(setting[0]);

            output[0] = setting[0];

            /*
             * If the encrypted password that the salt was extracted from is only
             * 1 character long, the salt will be corrupted.  We need to ensure
             * that the output string doesn't have an extra NUL in it!
             */
            output[1] = setting[1] ? setting[1] : output[0];

            p = output + 2;
      }
      setup_salt(salt);

      /*
       * Do it.
       */
      if (do_des(0L, 0L, &r0, &r1, count))
            return (NULL);

      /*
       * Now encode the result...
       */
      l = (r0 >> 8);
      *p++ = _crypt_a64[(l >> 18) & 0x3f];
      *p++ = _crypt_a64[(l >> 12) & 0x3f];
      *p++ = _crypt_a64[(l >> 6) & 0x3f];
      *p++ = _crypt_a64[l & 0x3f];

      l = (r0 << 16) | ((r1 >> 16) & 0xffff);
      *p++ = _crypt_a64[(l >> 18) & 0x3f];
      *p++ = _crypt_a64[(l >> 12) & 0x3f];
      *p++ = _crypt_a64[(l >> 6) & 0x3f];
      *p++ = _crypt_a64[l & 0x3f];

      l = r1 << 2;
      *p++ = _crypt_a64[(l >> 12) & 0x3f];
      *p++ = _crypt_a64[(l >> 6) & 0x3f];
      *p++ = _crypt_a64[l & 0x3f];
      *p = 0;

      return (output);
}

Generated by  Doxygen 1.6.0   Back to index